
Computing Equilibria by Incorporating Qualitative Models∗

Sam Ganzfried
Department of Computer Science

Carnegie Mellon University
sganzfri@cs.cmu.edu

Tuomas Sandholm
Department of Computer Science

Carnegie Mellon University
sandholm@cs.cmu.edu

ABSTRACT
We present a new procedure for solving large games of imperfect
information. Our approach involves—somewhat counterintuitive-
ly—solving an infinite approximation of the original game, then
mapping the equilibrium to a strategy profile in the original game.
Our main algorithm exploits some qualitative model of equilibrium
structure as an additional input to find an equilibrium in continu-
ous games. We prove that our approach is correct even if given a
set of qualitative models (satisfying a technical property) of which
only some are accurate. We compute equilibria in several classes of
games for which no prior algorithms have been developed. In the
course of our analysis, we also develop the first mixed-integer pro-
gramming formulations for computing an epsilon-equilibrium in
general multiplayer normal and extensive-form games based on the
extension of our initial algorithm to the multiplayer setting, which
may be of independent interest. Experiments suggest that our ap-
proach can outperform the prior state of the art, abstraction-based
approaches. In addition, we demonstrate the effectiveness of our
main algorithm on a subgame of limit Texas hold’em—the most
studied imperfect-information game in computer science.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Economics

Keywords
Game theory, equilibrium finding, continuous games

1. INTRODUCTION
Finding Nash equilibria in games of imperfect information is an

important problem. Significant progress has been made in the last
few years. In particular, several algorithms have been developed for
solving large (finite) two-player zero-sum imperfect-information
games (e.g., [10, 21]). On the other hand, relatively little work

∗This material is based upon work supported by the National Sci-
ence Foundation under grants IIS-0427858 and IIS-0905390. We
also thank Intel Corporation and IBM for their machine gifts.

Cite as: Computing Equilibria by Incorporating Qualitative Models, Sam
Ganzfried and Tuomas Sandholm, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

has been done on developing algorithms for computing equilibria in
imperfect-information games that are non-zero sum (with some no-
table exceptions, e.g., [11]), have more than two players (e.g., [9]),
and/or are continuous (i.e., infinite) (e.g., [17]). Such games are
significantly harder to solve in the complexity-theoretic sense: two-
player zero-sum games can be solved in polynomial time, while
two-player general-sum games are PPAD-hard [6], and games with
three or more players are FIXP-hard [7].

To make matters worse, many interesting real-world games are
so large that computing an equilibrium directly seems hopeless
even in the two-player zero-sum case. The standard approach to
deal with this is to run an abstraction algorithm on the full game to
construct a smaller game that is strategically similar to the original
game (e.g., [3]). Then the abstracted game is solved, and its solu-
tion is mapped to a strategy profile in the original game. While this
approach seems quite natural and promising so far, recent research
has shown that significant and surprising pathologies can arise in
which a finer-grained abstraction results in strategies that are ac-
tually much more exploitable in the full game than the equilibrium
strategies of a coarser abstraction [20]. Thus, this abstraction-based
approach is not theoretically sound.

We develop a new approach for solving large games. Rather than
construct a smaller game via an abstraction algorithm, we propose
solving an infinite approximation of the original game, then map-
ping the equilibrium of the infinite game to a strategy profile in the
original game. Perhaps counterintuitively, it is often the case that
the infinite approximation can be solved much more easily than the
finite game. We show that sometimes very fine abstractions would
be needed to match the solution quality of our approach.

Our main algorithmic innovation takes advantage of the fact that
in many multiagent settings it is significantly easier to infer quali-
tative models of the structure of equilibrium strategies than it is to
actually compute an equilibrium. For example, in (sequences of)
take-it-or-leave-it offers, equilibria involve accepting offers above
a certain threshold and rejecting offers below it [13]. Threshold
strategies are also common in auctions (e.g., [5]) and in deciding
when to make and break partnerships and contracts (e.g., [15]). In
poker the hole cards are private signals, and in equilibrium, often
the same action is taken in continuous regions of the signal space
(e.g., [1]).

We develop an approach for exploiting such qualitative mod-
els in equilibrium finding. We study a broad class of imperfect-
information games where players are given private signals at the
start. We first consider the two-player (general-sum) case in which
private signals are drawn independently from finite sets. For this
case, we develop an algorithm based on a mixed integer linear fea-
sibility program (MILFP) formulation that provably computes an
equilibrium assuming we are given a “correct” qualitative model

183

183-190

as input. The size of the program is polynomial in the parameters
of the problem and the constraints are very sparse, suggesting that
it can be solved quickly in practice. Our experiments confirm that
the algorithm runs very fast on a simplified endgame of limit Texas
hold’em, leading to a significant performance improvement.

Next, we generalize our algorithm to computing equilibria in the
following important extensions: many players, continuous private
signal distributions, and multiple candidate qualitative models that
satisfy a certain technical property (some of which can be incor-
rect). In most of these cases, we present the first algorithm that
provably solves the class of games. We also develop new mixed-
integer programming based algorithms for computing equilibria in
general multiplayer normal and extensive-form games based on the
extension of our initial algorithm to the multiplayer setting, which
may be of independent interest.

2. CONTINUOUS GAMES
Continuous games generalize finite strategic-form games to the

case of (uncountably) infinite strategy spaces. Many natural games
have an uncountable number of actions; for example, games in
which strategies correspond to an amount of time, money, or space.
One example of a game that has recently been modeled as a contin-
uous game in the AI literature is computational billiards, in which
the strategies are vectors of real numbers corresponding to the ori-
entation, location, and velocity at which to hit the ball [2].

DEFINITION 1. A continuous game is a tuple G = (N, S, U)
where

• N = {1, 2, 3, . . . , n} is the set of players,

• S = (S1, . . . , Sn) where each Si is a metric space corre-
sponding to the set of strategies of player i, and

• U = (u1, . . . , un) where ui : S → R is the utility function
of player i.

The main result regarding the existence of a Nash equilibrium in
continuous games is the following [8]:

THEOREM 1. Consider a strategic-form game whose strategy
spaces Si are nonempty compact subsets of a metric space. If the
payoff functions ui are continuous, there exists a (mixed strategy)
Nash equilibrium.

While this existence result has been around for a long time, there
has been very little work on practical algorithms for computing
equilibria in continuous games. One interesting class of continu-
ous games for which algorithms have been developed is separable
games [17]:

DEFINITION 2. A separable game is a continuous game with
utility functions ui : S → R taking the form

ui(s) =

m1X
j1=1

. . .

mnX
jn=1

aj1...jn
i f j1

1 (s1) . . . f jn
n (sn),

where aj1...jn
i ∈ R and the f j

i : Si → R are continuous.

As we will see, this is a significant restriction on the utility func-
tions, and many interesting continuous games are not separable.
Additionally, algorithms for computing approximate equilibria ha-
ve been developed for several other classes of infinite games, incl-
uding simulation-based games [19] and graphical tree-games [16].

For a broad class of games, we will show that the equilibrium
existence theorem above does not hold directly, but we can never-
theless prove existence of equilibrium by incorporating a qualita-
tive equilibrium model. However, we show that these games are
not separable, so the prior algorithm does not apply. These are the
topics of the next two sections. After that, we will develop new
algorithms for solving these games.

3. MOTIVATING EXAMPLE
Consider the following simplified poker game [1]. Suppose two

players are given private signals, x1 and x2, independently and uni-
formly at random from [0,1]. Suppose the pot initially has size
ρ (one can think of this as both players having put in an ante of
ρ
2

, or that we are at the final betting round—aka final street—of a
multi-street game). Player 1 is allowed to bet or check. If player
1 checks, the game is over and the player with the lower private
signal wins the pot (following the convention of [1]). If player 1
bets, then player 2 can call or fold. If player 2 folds, then player 1
wins the pot. If player 2 calls, then whoever has the lower private
signal wins ρ + 1, while the other player loses 1. This situation
can be thought of as an abstraction of the final street of a hand of
limit Texas hold’em where raising is not allowed and player 2 has
already checked.

It seems natural to define the strategy space S1 of player 1 as
the set of functions from [0, 1] to {bet, call} (i.e., to {0, 1}), and to
define S2 for player 2 similarly. Let pi(a1, a2, x1, x2) denote the
payoff of player i when the players play actions ai and are given
private signals xi. Then the utility of player i under the strategy
profile s = (s1, s2) is defined as

ui(s) =

Z
1

x1=0

Z
1

x2=0

pi(s1(x1), s2(x2), x1, x2)dx2dx1.

We would like to represent each player’s strategy set as a com-
pact metric space, so that we can apply Theorem 1. Unfortunately,
the naive representation does not yield compact metric spaces; so,
we need to go through a number of transformations to achieve this
goal. In particular, by iteratively eliminating dominated strategies,
we arrive at a representation where each player’s strategy space is
isomorphic to a compact subset of a Euclidean space.

In order for ui(s) to be defined, we must restrict the strategy
spaces Si to consist of only the measurable functions. In addi-
tion, if we want to turn Si into a metric space, we need to define a
distance function. A natural distance function to use is the L1 dis-
tance function: di(si, s

′
i) =

R
Xi

|si(xi) − s′i(xi)|dxi. Note that

(Si, di) does not quite define a metric space because the condition
di(s, t) = 0 iff s = t is not satisfied. To turn it into a metric space,
we can let ∼ be the equivalence relation defined by s ∼i s′ iff
di(s, s

′) = 0. If we then let Si equal the set of equivalence classes
with respect to ∼i, then (Si, di) is a metric space.

Unfortunately, the metric space (Si, di) is not compact, and we
cannot apply Theorem 1 to guarantee the existence of an equilib-
rium.

PROPOSITION 1. The metric space (Si, di) is not compact.

For brevity we omit the proofs. A full version with the proofs is
available on the authors’ websites.

Similarly, the space fails to be compact if we use other common
distance functions, such as the discrete metric, any Lp metric, or
L∞. So we can not simply use one of those distance functions in-
stead of L1 to get around Proposition 1.

However, the following observations allow us to restrict our at-
tention to a much smaller set of strategies.

184

DEFINITION 3. Let Si be the set of pure strategies of player i.
Then si ∈ Si is weakly dominated for player i if there exists a
strategy s∗i ∈ Si such that for all strategy profiles s−i ∈ S−i for
the other players, we have ui(s

∗
i , s−i) ≥ ui(si, s−i).

DEFINITION 4. Let si be an equivalence class of player i’s
pure strategies with respect to ∼i. Then si is weakly dominated
if si is weakly dominated for all si ∈ si.

DEFINITION 5. The equivalence class si is undominated if it is
not weakly dominated.

PROPOSITION 2. The equivalence class of strategies s2 ∈ S2

of player 2 is undominated only if it contains a unique strategy of
the following form: call if x2 ≤ x∗

2 and fold otherwise, for some
x∗

2.

We can remove all of the strategies from S2 that are dominated
according to Proposition 2 from our consideration, forming a much
smaller strategy space. In addition, we can remove the strategies
not satisfying the threshold property given in the proposition from
each equivalence class s2 ∈ S2, thus turning the equivalence clas-
ses into singletons. In the remainder of our discussion, we will let
S2 denote this smaller set.

We can now iteratively remove many strategies from S1 by the
following observation.

PROPOSITION 3. The equivalence class of strategies s1 ∈ S1

of player 1 is a best response to some element of S2 only if it con-
tains a unique strategy of the following form: bet if x1 ≤ x∗

1, check
if x∗

1 ≤ x1 ≤ x∗
1 and bet if x∗

1 ≤ x1 ≤ 1, for some x∗
1 ≤ x∗

1
1.

After removing the dominated strategies, the new strategy space
for player 1 becomes isomorphic to a compact subset of R2, and the
new strategy space for player 2 becomes isomorphic to a compact
subset of R. Let Ŝ1 and Ŝ2 now refer to these new strategy spaces.

It turns out that the functions ui are continuous in s for both
players using the new strategy spaces, if we define the distance
between two strategy profiles s = (s1, s2) and s′ = (s′1, s

′
2) as

d(s, t) = d1(s1, s
′
1) + d2(s2, s

′
2).

PROPOSITION 4. For both players, the utility functions ui are
continuous in s.

It follows from Theorem 1 that the game has a Nash equilibrium
using the new strategy spaces Ŝ1 and Ŝ2.

Now that the existence of an equilibrium is guaranteed, we must
figure out how to compute one. It turns out that the game is not
separable, so one cannot apply the algorithm from prior work [17].

PROPOSITION 5. This game is not separable.

However, it turns out that we can still solve this game quite easily
if we notice that every equilibrium will have x∗

1 ≤ x∗
2 ≤ x∗

1. Given
this guess of the form of an equilibrium, it is easy to compute an
equilibrium by noting that a player must be indifferent between
two actions at each threshold. For example, at x∗

1 player 1 must be
indifferent between betting and checking. His expected payoff of
betting is (1 − x∗

2)ρ + (x∗
2 − x∗

1)(ρ + 1) − x∗
1 and his expected

payoff of checking is ρ(1−x∗
1). Setting these two expressions equal

to each other yields x∗
2 = 2x∗

1. We can create a linear equation
similarly for the other two thresholds. Thus we have a system of n
linear equations with n unknowns (where n is the total number of
thresholds), which can be solved efficiently by matrix inversion.

1One can think of [0, x∗
1] as player 1’s “value betting” range—

where he bets hoping to get called by worse hands—and [x∗
1, 1]

as his “bluffing” range—where he bets hoping to get better hands
to fold.

4. OUR SETTING
The main setting of the rest of the paper will be a generalization

of the setting of the above example along several dimensions.

DEFINITION 6. A continuous Bayesian game is a tuple G =
(N, X, C, U, F) where

• N = {1, 2, 3, . . . , n} is the set of players,

• X = (X1, . . . , Xn) where each Xi is a compact subset of
R corresponding to the set of private signals of player i,

• C = (C1, . . . , Cn) where each Ci is a compact subset of R
corresponding to the set of actions of player i,

• U = (u1, . . . , un) where ui : C×X → R is the measurable
utility function of player i, and

• F = (F1, . . . , Fn) where Fi : Xi → [0, 1] is the cumulative
distribution function (CDF) of the private signal distribution
of player i.

The strategy space Si of player i is the set of all measurable func-
tions from Xi to Ci. We define Λi to be the set of Borel probability
measures on Si, giving us the mixed strategy space of player i. Let
Λ = ×iΛi. A (mixed) strategy profile is σ = (σ1, . . . , σn), where
σi ∈ Λi. Let σi|xi

denote the induced probability density function
of σi given signal xi over Ci. Then define

ûi(σ,x) =

Z

C

Y
j

σj|xj
(cj)ui(c, x)dc.

Define ui|xi
(σ), where σ ∈ Λ, xi ∈ Xi, as follows:

ui|xi
(σ) =

Z

X1

. . .

Z

Xi−1

Z

Xi+1

. . .

Z

Xn

ûi(σ, x)

dFn . . . dFi+1dFi−1 . . . dF1.

This denotes the expected utility of player i given that he has re-
ceived private signal xi when strategy profile σ is played.

For i ∈ N, xi ∈ Xi, σi ∈ Λi and σ−i ∈ ×j �=iΛj , define
ui|xi

(σi, σ−i) as the expected utility of player i given private signal
xi when he plays σi and the other players play σ−i.

According to the definition of Nash equilibrium, player i can
play arbitrarily in cases where he has a private signal that has zero
measure in the signal distribution Fi. Such behavior can result in
equilibria that violate our qualitative models (discussed later) even
when “equivalent" equilibria exist that satisfy the models. Thus, we
define a slightly stronger notion of equilibrium in order to rule out
arbitrary behavior in these regions of measure zero. In other words,
we require an agent to play rationally even if he gets a private signal
that has zero probability. (This strengthening of the equilibrium
concept is analogous to perfect Bayesian equilibrium, where each
agent has to act rationally even in information sets that are reached
with zero probability due to the strategies of the players. In our
case the reaching with zero probability is due to nature’s action,
i.e., giving the agents types.)

DEFINITION 7. Strategy profile σ ∈ Λ is an every-private-sig-
nal Bayesian (EPSB) equilibrium of G if for all i ∈ N , for all xi ∈
Xi, and for all τi ∈ Λi, we have ui|xi

(σi, σ−i) ≥ ui|xi
(τi, σ−i).

PROPOSITION 6. Let G be a game of the form given in Defini-
tion 6. Then G has an EPSB equilibrium if and only if it has an
equilibrium.

185

We now strengthen the notions of best response and dominated
strategies analogously. These will be useful when we analyze our
algorithms.

DEFINITION 8. Strategy σi is an EPSB best response for player
i ∈ N to profile σ−i if for all xi ∈ Xi and for all τi ∈ Λi, we have
ui|xi

(σi, σ−i) ≥ ui|xi
(τi, σ−i).

DEFINITION 9. Strategy σi is an EPSB ε-best response for pl-
ayer i ∈ N to profile σ−i if for all xi ∈ Xi and for all τi ∈ Λi, we
have ui|xi

(σi, σ−i) ≥ ui|xi
(τi, σ−i) − ε.

DEFINITION 10. Strategy σi is EPSB-undominated if for all
τi ∈ Σi there exist xi ∈ Xi, σ−i ∈ Σ−i such that ui|xi

(σi, σ−i)
> ui|xi

(τi, σ−i).

5. PARAMETRIC MODELS
In many multiagent settings, it is significantly easier to infer

qualitative models of the structure of equilibrium strategies than
it is to compute an equilibrium. The introduction gives several
examples, including sequences of take-it-or-leave-it offers, certain
auctions, and making or breaking partnerships and contracts. In
general, we call the values that divide the different strategic re-
gions thresholds (e.g., x∗

1, x
∗
1, and x∗

2 in the example above), and
refer to the guess of the structure of an equilibrium defined by
these thresholds a parametric model. Many additional examples of
games that are solved by the procedure used in the above example
appear in [1].

DEFINITION 11. A parametric model of game G = (N,X,C,
U,F) is a tuple P = (T, Q,≺) where

• T = (T1, . . . , Tn), where Ti denotes the number of regions
for player i,

• Q = (Q1, . . . , Qn), where Qi is a sequence {qij : 1 ≤ j ≤
Ti}, where qij ∈ Ci denotes the action taken by player i in
his j’th region of the model (at a boundary the lower region’s
action is taken), and

• ≺ is a partial ordering over the set of tuples (yij , yi′j′),
where yij ≺ yi′j′ if we require that the lower threshold of
player i’s j’th region is less than or equal to the lower thresh-
old of player i′’s j′’th region.

We saw in Section 3 that restricting the strategy spaces of a game
by forcing all strategies to conform to a specified parametric model
can allow us to both guarantee the existence of an equilibrium and
to actually compute one when neither of these could be accom-
plished in the original game by previously known techniques.

6. OUR MAIN ALGORITHM
In this section we present our algorithm for computing an equi-

librium given a parametric model. While parametric models asso-
ciate a pure action for each interval of signals, this can be prob-
lematic when the probability of obtaining individual private signals
is nonzero. In this case, our algorithm will actually output mixed
strategies.

For now we assume the game is finite, has two players, and a sin-
gle parametric model is specified. We will extend the algorithm to
more general settings along each of these dimensions in Section 7.

6.1 Constructing a MILFP
Given a problem instance G = (N, X, C, U, F) and a paramet-

ric model P, we first construct a mixed integer linear feasibility
program (MILFP) that contains both integer and continuous vari-
ables. Since Xi is finite for all players, we assume without loss of
generality that it is the set of integers from 1 to n. Let {ti} denote
the union of the sets of thresholds for both players under P. For
each threshold ti, we introduce two real-valued variables, xi and
yi, where xi corresponds to F1(ti) and yi corresponds to F2(ti).
For each threshold ti and each integer j ∈ [1, n], we introduce an
indicator (0–1 integer) variable, zi,j , such that zi,j = 1 implies
j − 1 ≤ ti ≤ j. So, overall we have 2|T | + |T ||S| variables,
where |T | is the number of thresholds in P and |S| is the number
of private signals.

Indifference constraints.
As the example in Section 3 demonstrates, we want to obtain

indifference between two actions at each threshold. Thus, we have
|T | equality constraints where each is of the form f(x, y) = 0
where f is linear in the xi and yi.

Threshold ordering constraints.
In order to guarantee that the solution conforms to the paramet-

ric model, we must add inequality constraints corresponding to the
partial ordering ≺ . If ti ≺ tj , then we add the constraints xi ≤ xj ,
yi ≤ yj .

Consistency constraints.
Next, we require that for each i, xi and yi are consistent in the

sense that there exists some value for ti such that F1(ti) corre-
sponds to xi and F2(ti) corresponds to yi. To accomplish this,
we include indicator constraints of the following form for each
i, j : zi,j = 1 ⇒ F1(j − 1) ≤ xi ≤ F1(j) and zi,j = 1 ⇒
F2(j−1) ≤ yi ≤ F2(j) where we define F1(−1) = F2(−1) = 0.
Stated explicitly, we add the following 4 linear inequalities for each
i ∈ [1, |T |], j ∈ [0, n]:

xi − F1(j − 1)zi,j ≥ 0 xi − zi,j(F1(j) − 1) ≤ 1

yi − F2(j − 1)zi,j ≥ 0 yi − zi,j(F2(j) − 1) ≤ 1

Finally, we must ensure that for each i, zi,j = 1 for precisely one
j (i.e., ti ∈ [j − 1, j] for some j). We accomplish this by adding

the equality constraint
Pn

j=0
zi,j = 1 for each i.

Thus, there are O(|T ||S|) consistency constraints, where |S| is
the number of private signals. There are more consistency con-
straints than constraints of any other type, and thus the MILFP has
O(|T ||S|) total constraints.

6.2 Obtaining mixed strategies from the
MILFP solution

Once we obtain the xi and yi by solving the MILFP, we must
map them into mixed strategies of the game. Suppose player 1
is dealt private signal z ∈ [1, n] and consider the interval I =
[F1(z−1), F1(z)]. Now define the intervals Ji = [xi−1, xi] where
we define x−1 = 0. Let Oi denote the overlap between sets I and
Ji. Then player 1 will play the strategy defined by region i with
probability OiP

i Oi
. The strategy for player 2 is determined simi-

larly, using the yi and F2.

6.3 Algorithm soundness and completeness
We are now ready to prove that our algorithm indeed yields an

equilibrium.

186

THEOREM 2. Suppose that for all i ∈ N and for all σ−i ∈
Λ−i, all pure-strategy EPSB best responses of player i to σ−i sat-
isfy the given parametric model. Then our algorithm outputs an
equilibrium.

The theorem directly implies the following corollary. In some
settings it may be easier to check the premise of the corollary than
the premise of the theorem.

COROLLARY 1. Suppose all EPSB-undominated strategies fol-
low the given parametric model. Then our algorithm outputs an
equilibrium.

7. EXTENSIONS TO MORE GENERAL
SETTINGS

In this section we describe several important extensions of our
approach to more general settings.

7.1 Continuous private signal distributions
In this subsection we generalize the approach to continuous pri-

vate signal distributions. If the CDFs Fi are continuous and piece-
wise linear, we only need to alter the consistency constraints. Sup-
pose that {ci} denotes the union of the breakpoints of the CDFs of
the Fi, and suppose Fi(x) = aijx+ bij for cj−1 ≤ x ≤ cj (where
c−1 = 0). Then we add the following constraints for all j and all
pairs of players (i, i′) with i′ = i + 1, where xi, xi′ correspond to
the given threshold variables, γ = ai′jbij−aijbi′j , and we assume

all the xi, xi′ lie in [M, M]:

ai′jxi − aijxi′ ≥ zi,j(γ − ai′jM + aijM) + ai′jM − aijM

ai′jxi − aijxi′ ≤ zi,j(γ − ai′jM + aijM) + ai′jM − aijM.

We also retain the constraints from the discrete case which en-
sure that zi,j = 1 implies cj−1 ≤ xi ≤ cj .

Using the technique described in the next subsection, we can
also approximately solve the problem for continuous CDFs that are
not piecewise linear by approximating them with piecewise linear
functions.

7.2 Many players
In games with more than two players, the indifference constraints

are no longer linear functions of the variables. (All other con-
straints remain linear.) With n players the indifference constraints
are degree n − 1 polynomials. Therefore, there is a need to repre-
sent products of continuous variables, xixj , using linear constraints
only since we wish to model the problem as a MILFP.

7.2.1 Approximating products of continuous varia-
bles using linear constraints

In this subsection we describe how a modeling technique [4] can
be applied to approximate the nonlinear functions by piecewise lin-
ear functions. First we define two new variables β1 = 1

2
(xi + xj)

and β2 = 1

2
(xi − xj), noting that β2

1 − β2
2 = xixj . To ap-

proximate w1 = β2
1 , we select k breakpoints from the interval

[0,1]—in our experiments we will use qi = i−1

k−1
, where k(ε) is

a function of an input parameter ε. Next, we add the constraintPk
i=1

λ1iq
2
i = w1, where the λ1i are continuous variables. Next

we add the constraint
Pk

i=1
λ1iqi = β1. We also add the constraintPk

i=1
λ1i = 1, where we also require that at most two adjacent

λ′
1is are greater than zero (we accomplish this in the standard way

of adding a binary indicator variable per segment and the appro-
priate constraints, called SOS2 constraints). Then if we define the

variable uij to represent the product xixj , we just need to add the
constraint uij = w1 − w2, where w2 and its additional constraints
are defined analogously to w1.

Finally, we replace each indifference equation f(x) = 0 with
the inequalities f(x) ≤ ε

2
and f(x) ≥ − ε

2
where ε is an approxi-

mation parameter given as input to the algorithm.

7.2.2 Tying the accuracy of the approximation to the
accuracy of the equilibrium

Suppose we select k + 1 breakpoints per piecewise linear curve,
with

k ≥

s
(T + 2)(n−1)M(n − 1)

ε
, (1)

where T is the maximal number of thresholds of one of the para-
metric models for a player, M is the difference between the max-
imum and minimum possible payoff of the game, n is the number
of players, and ε is an approximation parameter given as input to
the algorithm.

THEOREM 3. Suppose that for all i ∈ N and for all σ−i ∈
Λ−i, all pure-strategy EPSB ε-best responses of player i to σ−i

satisfy the given parametric model. Furthermore suppose that the
number of breakpoints satisfies Equation 1. Then our algorithm
outputs an ε-equilibrium.

For particular games, the number of breakpoints needed to obtain
a desired ε can actually be far smaller. For example, if each indif-
ference equation consists of the sum of at most T ∗ expressions, for
T ∗ < (T + 2)(n−1), then we can replace (T + 2)(n−1) with T ∗ to
create a tighter upper bound. Additionally, even though the num-
ber of breakpoints in Equation 1 is exponential in the number of
players, one can alternatively model the problem as a MILFP using
a polynomial number (in n) of constraints and variables. This is
accomplished by a recently published way of modeling piecewise
linear functions in a MIP [18]. (It uses a binary rather than unary
encoding to refer to the pieces via indicator variables.)

7.2.3 New MIP algorithms for computing equilibria
in normal and extensive-form games

It is worth noting that the modeling approach of Section 7.2.1 can
be used to develop new algorithms for computing an ε-equilibrium
in general-sum games with two or more players in both normal
and extensive form. In particular, the MIP Nash algorithm for
computing an equilibrium in two-player general-sum normal-form
games [14] can be directly extended to a MIP formulation of mul-
tiplayer normal-form games which contains some nonlinear con-
straints (corresponding to the expected utility constraints). If we
apply our approach using sufficiently many breakpoints, we can
obtain an ε-equilibrium for arbitrary ε by approximating the non-
linear constraints by piecewise linear constraints. Additionally, we
can represent the equilibrium-computation problem in multiplayer
extensive-form games as a MIP if we write out the expected utility
constraints separately on a per-information-set basis. This leads to
a new algorithm for computing equilibria in multiplayer extensive-
form games, an important class of games for which no algorithms
for computing a Nash equilibrium with solution guarantees were
known.

7.3 Multiple parametric models
Quite often it is prohibitively difficult to come up with one para-

metric model, P , that is correct, but one can construct several para-
metric models, Pi, and know that at least one of them is correct.

187

This is the case for our experiments on Texas hold’em in Section
8.2. This scenario could arise for several reasons; for example, of-
ten we can immediately rule out many parametric models because
all strategies that satisfy them are dominated. We now generalize
our approach to this situation.

We define the notion of model refinement in a natural way:

DEFINITION 12. P = (T, Q,≺) is a refinement of P ′ = (T ′,
Q′,≺′) if for each i ∈ N, Q′

i is a (not necessarily contiguous)
subsequence of Qi.

DEFINITION 13. P is a US-refinement of P ′ if Q′
i corresponds

to a unique subsequence of Qi for each i.

For example, if N = {1} and Q′
1 = {1, 2} while Q1 = {1,2,3,2},

then P is a refinement of P ′, but is not a US-refinement.
We now generalize our algorithm to the setting where the Pi have

a common US-refinement P ′. We first define an indicator variable
ζi corresponding to each model. Next we replace each indifference
constraint f(x) = 0 corresponding to model Pi by the following
two inequalities, where K is a sufficiently large constant: f(x) −
Kζi ≥ −K and f(x) + Kζi ≤ K.

Next we add certain inequalities corresponding to the models Pi

that differ from P ′. For simplicity, we will demonstrate these by
example. Suppose that, under P ′, player 1 plays action a1 in his
first region, a2 in his second region, and a3 in his third region. Sup-
pose that in P1 he plays a1 in his first region and a3 in his second
region (recall that P ′ is a refinement of P1). Then we must add two
constraints that ensure that at the first threshold of P1, both a1 and
a3 are (weakly) preferred to a2. In general, whenever actions of
P ′ are omitted by a Pi, we must add constraints to the neighboring
actions at their intersection ensuring that they are preferred to the
omitted actions.

We also replace each order constraint xj − xj′ ≤ 0 correspond-
ing to model Pi by xj −xj′ +Kζi ≤ K. Finally, we add the equal-
ity
P

i ζi = 1 to ensure that only the constraints corresponding to
one of the candidate parametric models are used in the solution.

The following theorem states that our approach is correct even in
this setting where there are multiple parametric models, assuming
they have a common US-refinement.

THEOREM 4. Let there be two players. Let {Pi} be a set of
parametric models with a common US-refinement. Suppose that
for all i ∈ N and for all σ−i ∈ Λ−i, all pure-strategy EPSB best
responses of player i to σ−i satisfy at least one of the Pi (not nec-
essarily the same Pi). Then our algorithm outputs an equilibrium.

We can also obtain a theorem with an ε guarantee similar to The-
orem 3 for the case of more than two players.

It is worth noting that the number of variables and constraints
in the new MILFP formulation is still O(|S||T |) (assuming a con-
stant number of parametric models). Alternatively, we could have
solved several MILFP’s—one for each parametric model. While
each MILFP would be smaller than the one we are solving, each
would still have O(|S||T |) variables and O(|S||T |) constraints,
and thus have the same size asymptotically as our formulation. This
alternative formulation is also potentially effective, assuming we
have access to several processors to run the threads in parallel.

8. EXPERIMENTS
We now present results from several experiments that investigate

the practical applicability of our algorithm and extensions, as well
as the overall procedure of solving large finite games by approxi-
mating them by continuous games.

n 50 100 150 200 250
v(Gn) −0.0576 −0.0566 −0.0563 −0.0561 −0.0560
π(σn) −0.0624 −0.0612 −0.0579 −0.0583 −0.0560

Figure 1: Worst-case payoff of playing the projection of the
equilibrium of G∞ (π(σn)) versus the value of Gn (v(Gn)).

8.1 Approximating large finite games by con-
tinuous games

In Section 3 we saw an example of a game with infinite strat-
egy spaces that could be solved by an extremely simple procedure
(once we guessed a correct parametric model). If instead the set of
private signals were the finite set {1, . . . , n}, then it is clear that as
n gets large, the running time of computing an exact equilibrium
of the game will get arbitrarily large; on the other hand, solving the
infinite approximation as n goes to infinity will still take essentially
no time at all, and we would expect the solution to the infinite game
to be very close to the solution of the finite game. In this section
we will consider a similar game and show that very fine-grained
abstractions would be needed to match the solution quality of our
approach.

Kuhn poker is a simplified version of poker that was one of the
first games studied by game theorists [12]. It works as follows.
There are two players and a deck containing three cards: 1, 2, and
3. Each player is dealt one card at random, and both players ante
$1. Player 1 acts first and can either check or raise by $1. If player
1 raises, player 2 can either call—in which case whoever has the
higher card wins the $4 pot—or fold—in which case player 1 wins
the entire $3 pot. If player 1 checks, player 2 can check—in which
case whoever has the higher card wins the $2 pot—or bet. If player
1 checks and player 2 bets, player 1 can call—in which case who-
ever has the higher card wins the $4 pot—or fold, in which case
player 2 wins the $3 pot.

Generalized Kuhn poker, Gn, has the same rules as Kuhn poker
except that the deck contains n cards instead of 3. Define G∞ to
be the same as Gn except the players are both dealt a real number
drawn uniformly at random from the unit interval [0, 1]. Informally,
G∞ is like the limit as n approaches infinity of Gn. It turns out
that G∞ has a relatively simple pure strategy Nash equilibrium that
is derived in [1]. It can be computed by solving a system of six
linearly independent indifference equations with six unknowns.

Once the infinite game, G∞, has been solved, its solution can
be projected down to a corresponding strategy profile in Gn: call
this profile σn. We ran experiments for several settings of n. We
compared the performance of σn against its nemesis to the value
of the game to player 1 (i.e., how an optimal strategy performs):
the results are summarized in Figure 1. The payoffs agree to four
decimal points when n = 250.

Next, we considered different abstractions of G250 obtained by
grouping consecutive private signals together. For each abstraction,
we computed an equilibrium in the corresponding abstracted game,
then determined the payoff of player 1’s component of that equilib-
rium against its nemesis in the full game G250. As Figure 2 shows,

buckets 2 5 10 25 50 125
payoff −0.2305 −0.0667 −0.0593 −0.0569 −0.0562 −0.0560

Figure 2: Experiments for G250.

125 buckets are needed to obtain agreement with the value of the

188

game to four decimal places—something that σ250 accomplishes
as we showed above. As n gets even larger, we would expect to re-
quire even more buckets in our abstraction to obtain a strategy with
exploitability as low as that of σn. Thus we can potentially obtain
a given level of exploitability with a much lower runtime with our
projection approach, since the computation required by abstraction-
based approaches increases dramatically as n increases, while solv-
ing G∞ and projecting its solution down to Gn requires very little
computation.

To put these results in perspective, the game tree for two-player
limit Texas hold’em has approximately 9.17 × 1017 states, while
recent solution techniques can compute approximate equilibria for
abstractions with up to 1010 game states (e.g., [10]). Thus the ra-
tio of the number of states in the largest solvable abstraction to the
number of states in the full game is approximately 10−8. On the
other hand, we saw in G250 that we require at least half of the num-
ber of states in the full game in our abstraction to compete with the
solution generated by the infinite game (assuming we are restricting
ourselves to uniform abstractions). Thus, it is conceivable that one
can come up with an infinite approximation of Texas hold’em (or
one of its subgames) that results in less exploitable strategies than
the current strategies obtained by abstraction-based approaches.

In the next section we conduct an investigation of the feasibility
of applying the algorithm and extensions developed in this paper to
large real-world games, using Texas hold’em as a benchmark.

8.2 Limit Texas hold’em
We ran our algorithm on a game similar to the river endgame of a

hand of limit Texas hold’em. In this game, there is an initial pot of
ρ, and both players are dealt a private signal from [0,1] according to
piecewise linear CDFs F1 and F2. Player 1 acts first and can either
check or bet $1. If player 1 checks, then player 2 can check or bet;
if he checks the game is over, and if he bets then player 1 can call
or fold. If player 1 bets, then player 2 can fold, call, or raise (by 1).
If player 1 bets and player 2 raises, then player 1 can either call or
fold. Thus, our game is similar to Game 10 in [1], except that we
do not assume uniform private signal distributions.

To obtain a wide range of interesting prior distributions, we de-
cided to use the actual prior distributions generated by a high cal-
iber limit Texas hold’em player. Once the river card is dealt in
Texas hold’em, there is no more information to be revealed and the
game becomes a 1-street game like the game described above (ex-
cept that in limit Texas hold’em the private signals are dependent2,
and up to three raises are allowed in each betting round). If we as-
sume that the full strategies of both players are known in advance,
then when the river card is dealt we can create a distribution over
the possible 5-card hand rankings each player could have, given the
betting history so far (e.g., the probability he has a royal flush, a full
house with 9’s over 7’s, etc.).

In particular, we obtained the strategies from GS4—a bot that
performed competitively in the 2008 AAAI computer poker com-
petition. To test our algorithm, we created a new bot GS4-MIP that
plays identically to GS4 on the first three streets, and on the river
plays according to our algorithm. Specifically, we assume that both
players’ hand rankings on the river are distributed assuming they
had been following the strategy of GS4 until that point; these de-
termine the private signal distributions.

Given this game model, we developed three different paramet-

2We do not expect the dependence to have a large effect in practice
for this game due to the large number of possible private signals. In
addition, we have developed an efficient extension of our MILFP to
deal with the case of dependent private signals, which can be used
if we expect dependence to have a significant effect.

ric models that we expected equilibria to follow (depending on the
private signal distributions at the given hand). This is noteworthy
since [1] only considers a single parametric model for their game,
and our experiments revealed that if we did not include all three
models, our MILFP would sometimes have no solution, demon-
strating that all three models are necessary. The models are given
in the appendix. It is easy to see that the first model is a US-
refinement of the other two. To solve the MILFP, we used CPLEX’s
MIP solver on a single machine.

Once we solved this simplified game, we used a very naive map-
ping to transform it to a strategy in the full 3-raise game (e.g., player
1 will put in a second raise with hands in the top half of player 2’s
re-raise range). Since this mapping was so simple, we suspect that
most of the success of the strategy was due to the solution com-
puted by our algorithm.

We ran GS4-MIP against the top five entrants of the 2008 AAAI
computer poker competition, which includes GS4. For each pair-
ing, we used 20,000 duplicate hands to reduce the variance. GS4-
MIP performed better against 4 of the 5 competitors than GS4 did.
In the match between GS4-MIP and GS4, GS4-MIP won at a rate
of 0.018 small bets per hand. This is quite significant since most
of the top bots in the competition were separated by just 0.02–0.03
small bets per hand overall, and the only difference between GS4
and GS4-MIP is on the river street, which is reached only on some
hands. Additionally, GS4-MIP averaged only 0.49 seconds of com-
putation time per hand on hands that went to the river (and 0.25 sec-
onds of computation per hand overall) even though it was solving
a reasonably large MIP at runtime3 (1,000–2,000 rows and several
hundred columns). The actual competition allows an average of 7
seconds per hand, so our algorithm was well within the time limit.
Perhaps it is the sparsity of the constraints that enabled CPLEX to
solve the problems so quickly, as the majority of the constraints are
indicator constraints which only have a few non-zero entries.

It is worth noting that our algorithm is perhaps not the most ef-
fective algorithm for solving this particular problem; in the discrete
case of actual Texas hold’em, the river subgame can be formulated
as a linear program (which can probably be solved faster than our
MILFP). On the other hand, continuous games, two player general-
sum games, and multiplayer games cannot be modeled as linear
programs while they can be solved with our approach. Further-
more, the results in the previous subsection show that large finite
two-player zero-sum games can sometimes be solved more effec-
tively (both according to runtimes and quality of solutions) by ap-
proximating them by a continuous game that is easier to solve, than
by abstracting the game and solving a smaller finite game.

9. CONCLUSION
We developed an approach for computing approximate equilib-

ria in large games of imperfect information by solving an infinite
approximation of the original game. A key idea is that we include
additional inputs in the form of qualitative models of equilibrium
strategies (how the signal space should be qualitatively partitioned
into action regions). The approach is guaranteed to work even if
given a set of qualitative models of which only some are correct.
Experiments suggest that this approach can outperform abstraction-
based approaches on some games. We construct a game in which
only a tiny amount of abstraction can be performed while obtaining

3The reason we need to solve the MIP at runtime is that we have
to solve a different MIP for each betting sequence up until the river
and each set of community cards (in the full game, not in the ab-
stract game). Since there is such a large number of such subgames,
it is much easier to just solve them quickly at runtime than to solve
them all in advance.

189

strategies that are no more exploitable than the equilibrium strate-
gies of our infinite approximation. We also showed how to extend
our algorithm to the cases of more than two players and continuous
private signal distributions. In most of these cases, we presented
the first algorithm that provably solves the class of games. Our ex-
periments show that the algorithm runs efficiently in practice and
leads to a significant performance improvement in two-player limit
Texas hold’em—the most studied imperfect-information game in
computer science.

Our approach presents a viable alternative to abstraction-based
approaches. This is particularly promising in light of the recently
uncovered abstraction pathologies. While in this paper we inferred
the infinite approximations of finite games and the parametric mod-
els manually, future work on our approach should develop methods
for generating them systematically and automatically.

10. REFERENCES
[1] J. Ankenman and B. Chen. The Mathematics of Poker. 2006.

[2] C. Archibald and Y. Shoham. Modeling billiards games.
AAMAS, 2009.

[3] D. Billings, et al. Approximating game-theoretic optimal
strategies for full-scale poker. IJCAI, 2003.

[4] J. Bisschop. AIMMS—Optimization Modeling. 2006.

[5] L. Blumrosen, et al. Auctions with severely bounded
communication. JAIR, 2007.

[6] X. Chen and X. Deng. Settling the complexity of 2-player
Nash equilibrium. FOCS, 2006.

[7] K. Etessami and M. Yannakakis. On the complexity of Nash
equilibria and other fixed points. FOCS, 2007.

[8] D. Fudenberg and J. Tirole. Game Theory. 1991.

[9] S. Ganzfried and T. Sandholm. Computing equilibria in
multiplayer stochastic games of imperfect information.
IJCAI, 2009.

[10] A. Gilpin, et al. Gradient-based algorithms for finding Nash
equilibria in extensive form games. WINE, 2007.

[11] D. Koller, et al. Efficient computation of equilibria for
extensive two-person games. GEB, 1996.

[12] H. Kuhn. Simplified two-person poker. Contributions to the
Theory of Games, 1950.

[13] T. Sandholm and A. Gilpin. Sequences of take-it-or-leave-it
offers: Near-optimal auctions without full valuation
revelation. AAMAS, 2006.

[14] T. Sandholm, et al. Mixed-integer programming methods for
finding Nash equilibria. AAAI, 2005.

[15] T. Sandholm and V. Lesser. Leveled commitment contracts
and strategic breach. GEB, 2001.

[16] S. Singh, et al. Computing approximate Bayes-Nash
equilibria in tree-games of incomplete information. EC,
2004.

[17] N. Stein, et al. Separable and low-rank continuous games.
International Journal of Game Theory, 2008.

[18] J. Vielma and G. Nemhauser. Modeling disjunctive
constraints with a logarithmic number of binary variables
and constraints. IPCO, 2008.

[19] Y. Vorobeychik and M. Wellman. Stochastic search methods
for Nash equilibrium approximation in simulation-based
games. AAMAS, 2008.

[20] K. Waugh, et al. Abstraction pathologies in extensive games.
AAMAS, 2009.

[21] M. Zinkevich, et al. Regret minimization in games with
incomplete information. NIPS, 2007.

APPENDIX
In this section we present the parametric models used for our ex-
periments in Section 8.2 on limit Texas hold’em.

The first parametric model, shown in Figure 3, is identical to the
model presented in [1] (with the thresholds renamed). For player
1, the action before the hyphen specifies the first action taken in
the betting round, and the action after the hyphen specifies the next
action taken if the betting gets back to him. A bluff denotes a bet
with a bad hand (where the player betting is hoping the other player
folds). For player 2, the first action listed denotes the action taken
when player 1 bets, and the second action (after the slash) denotes
the action taken when player 1 checks. The second parametric
model, shown in Figure 4, is identical to the first model except
that threshold i is shifted above threshold d. In the third parametric
model (Figure 5), player 1 only checks when he is first to act (and
never bets).

Figure 3: First parametric model.

Figure 4: Second parametric model.

Figure 5: Third parametric model.

190

